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Abstract.  Zyczkowski, Horodecki, Sanpera and Lewenstein (ZHSL) recently proposed a ‘natural
measure’ on theV-dimensional quantum systems, but expressed surprise when it led them to
conclude that fov = 2 x 2, disentangled (separable) systems are more probab&2@ 0.002)

in nature than entangled ones. We contend, however, that ZHSL's (rejected) intuition has, in
fact, a sound theoretical basis, and that @hpriori probability of disentangled Z 2 systems

should more properly be viewed as (considerably) less than 0.5. We arrive at this conclusion
in two quite distinct ways, the first based on classical and the second, quantum considerations.
Both approaches, however, replace (in whole or part) the ZHSL (product) measure by ones based
on the volume elements afionotonametrics, which in the classical case amounts to adopting the
Jeffreys’ prior of Bayesian theory. Only the quantum-theoretic analysis—which yields the smallest
probabilities of disentanglement—uses thi@imurmumber of parameters possible, thavé—1,

as opposed t&v2 + N — 1 (although this ‘over-parametrization’, as recently indicated by Byrd,
should be avoidable). However, despite substantial computation, we are not able to obtain precise
estimates of these probabilities and the need for additional (possibly supercomputer) analyses is
indicated—particularly so for higher-dimensional quantum systems (such axtB@ges, which

we also study here).

1. Introduction

In a recent paper [1]Zyczkowski, Horodecki, Sanpera and Lewenstein (ZHSL) [1] sought to
estimate ‘how many entangled (disentangled) states exist among all quantum states’. They
gave three principal reasons for their study: (1) to answer the question ‘is the mvordd
classicalor more quantur®’; (2) to know, for the purposes of numerical simulation, ‘to what
extent entangled quantum systems may be considered as typical’; and (3) ‘to investigate how
frequently certain nonseparable states, ‘peculiarly’ admitting time reversal in one subsystem,
arise’. In response to the first query, ZHSL concluded—to their ‘surprise’ [1, p 889]—that
although the (higher-dimensional) ‘world’ is, in general, more quantum than classical, this is
not so for the 2x 2 quantum systems. We contend here, however, that alternative analyses
based on the concept ofonotonemetrics on classical and quantum systems [2], lead to the
elimination of this exception to their general rule.

In their investigation, ZHSL obtained a variety of both analytical and numerical bounds
on the volumes of the sets of separable states for various dimensions, using what they asserted
was a ‘natural measure’ on the space of density matrices (cf [3]). In the first analytical part of
this paper (section 2), we indicate an essential degree of arbitrariness in the choice of measure
by ZHSL, and its consequences for the results they have reported (cf [4]). We then argue
in favour of a specific alternative—well-founded on statistical principles—which leads to a
markedlysmallerprobability of encountering a disentangled (separable) state. (The numerical
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results we report are for thex22, 2 x 3 and 3x 3 quantum systems.) Then, in section 3, we
study the use of methods more fundamentally quantum-theoretic in nature—requiring us to
develop a quite distinct set of procedures than those used by ZHSL and followed in section 2.
(Due to the associated large computational demands, we have primarily limited our analyses to
the 2x 2 systems, but in section 3.6 we do, in fact, initiate a parallel investigation of xh& 2
systems.) We obtain for each of more than 30 pairs of parameters, determining the fineness
of approximating square grids and three-dimensional simplicial decompositions, a set of three
probabilities of disentanglement (table 1), each probability being based on a distinct form of
monotone metric [6, 7]. The sets are intended to determine a range of values within which any
suitable candidate (meeting underlying natural criterimofiotonicity for the ‘true’a priori
probability of disentanglement must lie. Essentially all such probabilities we obtain turn out to
be considerably smaller than both the result of ZHS632+ 0.002) and the alternative to it
(~0.35) we promote in section 2, based on the Jeffreys’ prior of Bayesian theory. However, the
need for additional computational work is indicated in order to sharpen the estimates reported
in sections 3.1-3.3, as well as to extend our general approach to higher-dimensional quantum
systems. (We are reminded, to some degree, of the computational/combinatorial challenges
of lattice gauge theory [5].) In section 3.5, we switch from the explicit enumeration approach
(based on regular grids and simplicial decompositions) to a randomization methodology
(such as ZHSL employed in their studies)—but also find this to be highly computationally
demanding, since we must search in a high-dimensional parameter space for those particular
points corresponding to density matrices.

A conservative evaluation of the accumulated evidence of the multiple quantum-theoretic
analyses we report (tables 1-3) indicates thaatbeori probability of disentanglement for the
2 x 2 systems should be regarded—using any of a continuum of possible acceptable standards,
in particular that provided by thainimalmonotone (Bures) metric—a® morethan 11%. As
to alower bound, on the other hand, on the probability of separability, it remains an unsettled
issue as to whether or not tmeaximalmonotone metric should be viewed as furnishing a
bound strictly greater than zero.

In our concluding remarks (section 4), we draw attention to an interesting recent analysis
of M Byrd (personal communication), bearing upon the issue of whether or not the use of
‘over-parametrizations’ by ZHSL and (following them) by us in section 2, can be averted.

2. Semiclassical statistical analyses of 8 3, 2 x 3 and 2 x 2 quantum systems

ZHSL [1] used as a measure on the spaceVok N density matrices the product of the
Haar measure for the unitary grodp(N) and the uniform distribution on thev — 1)-
dimensional simplex spanned by theeigenvalues of the density matrix. Now, we see no
basis (within the semiclassical framework adopted by ZHSL) for questioning the use of the
Haar measure. However, the selection of the uniform distribution on the simplex appears
not to be so compelling, as it lacks as convincing a rationale as the group-theoretic argument
for the Haar measure (cf [8]). Also, we must point out that the analyses of ZHSL are based
on ‘over-parametrizations’, sinc&? + N — 1 parameters are used, while the convex set of
N x N density matrices is onlyN? — 1)-dimensional in nature. Though we adhere to this
over-parametrization in the analyses of this section, in section 3 we revert to the more natural
and conventional form.

The uniform distribution on théV — 1)-dimensional simplexi; +- - -+ py = 1; p; > 0)
can be considered to be that specific member of the (continuous) family of Dirichlet probability
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distributions [9, 10, section 7.7],

Cvp+---+vy) g vy-1-1 vy—1

-~ P1 Py A=—p1—-—pyD)™ v1>0,...,oy >0 (1)
C(y)...Duy) 7t N-1

which has all itsN parametersy) set equal to unity. The family of Dirchlet distributions is
conjugatein that if one selectsprior distribution belonging to it, then, through the application
of Bayes’ rule to observations drawn from a multinomial distribution, one arrivegadtarior
distribution which is also within the family.

2.1. Jeffreys’ prior

Of strongest interest, however, for our purposes here, is that the principle of reparametrization
invariance (based on th@sher information11, 12]) leads to the special case (Jeffreys’ prior)

in which (1) has all itsN parameters set equal tme-half[13, 14, equation (3.7)] and not
unity, as for the uniform distribution. ‘“The main intuitive motivation for Jeffreys’ priors is

not their invariance, which is certainly a necessary, but in general far from sufficient condition
to determine a sensible reference prior; what makes Jeffreys’ priors unique is that they are
uniform measures in a particular metric which may be defended as the ‘natural’ choice for
statistical inference’ [15]. By way of illustration, Kass [14, section 2] (cf [16]), using the
transformationsp; = 2zi2, demonstrates how the Jeffreys’ prior for the trinomial model

(N = 3) on the two-dimensional simplex can be (making use of spherical polar coordinates)
transformed to the uniform distribution on the positive-octant portion of the two-dimensional
spherez? + z5 + z3 = 4 of radius 2. (Braunstein and Milburn [17] show that for two-level
quantunsystems, statistical distinguishability is just the (Bures/minimal monotone) metric on
the surface of the unit sphere fiour dimensions. In contrast, the spacenetevel quantum
systems is ‘not a space of constant curvaturefer 2 and not even a locally symmetric space.
The physical meaning of this fact seems to be an interesting open question’ [18] (cf [19, 20]).)

Clarke and Barron [21, 22] (cf [23]) have established that Jeffreys’ priors (the normalized
volume elements of Fisher information metrics) asymptotically maximize Shannon’s mutual
information between a sample of sizeand the parameter, and that Jeffreys’ prior is the
unique continuous prior that achieves the asymptotic minimax risk when the loss function
is the Kullback-Leibler distance between the true density and the predictive density. (The
possibility of extending the ‘universal coding’ results of Clarke and Barron tayttetum
domain, has been investigated in [24] (cf [25]).) Clarke [26] asserts that ‘Jeffreys’ prior can
be justified by four distinct arguments’. In addition, Balasubramanian [27] ‘cast parametric
model selection as a disordered statistical mechanics on the space of probability distributions’
and ‘derived and discussed a novel interpretation of Jeffreys’ prior as the uniform prior on the
probability distributions indexed by a parametric family’ (cf [28]).

Now, itis of interest to note that in the limit in which tiéparametersy) of the Dirichlet
distribution (1) all go to zero, the distribution becomes totally concentrated on the pure states
of the N-dimensional quantum system. Since ZHSL showed that in ‘the subspace of all pure
states, the measure of separable states is equal to zero’ [1, p 886], we would anticipate, making
use of a continuity argument, that the measure or volume of the set of separable states would
increase if allv parameters of (1) were fixed at one-half (Jeffreys’ prior), but still be less than
if they were all taken to be equal to unity, etc. (‘The purer a quantum state is, the smaller its
probability of being separable’ [1, p 891].)
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2.2. The case of 3 3 quantum systems

We have, in fact, tested these last contentions regarding competing measures of separability,
through numerical means, first, generating a set of 3000 randd®u8itary matrices = 9),
following the (Hurwitz/Euler angle) prescription given in [29, equations (3.1)—(3.5)]. From
it, we produced (in the manner of ZHSL [1, equation (34)]) three sets of 300@ @ensity
matrices: one set based on the selectipg- - - - = vg = %; another forv; = --- = vg = 1
(as, in effect, done in [1]); and a third fof = ... = vg = g (Random realizations of the
Dirichlet distributions were generated based on the fact that they can be considered to be joint
distributions of (univariate) gamma distributions [9, 10]. The 3000 instances we obtain are
obviously far fewer in number than the ‘several millions’ ZHSL [1] apparently employed as
a general rule in their series of analyses of quantum systems of various dimensions. This is
primarily due to our full reliance ONATHEMATICA, while ZHSL—as KZyczkowski wrote
in a personal communication—employBoRTRAN routines for random number generation.
Nevertheless, as noted immediately bel&yczkowski, using his speedier routines, has
confirmed the main aspects of our analysis. Additionally, ghantum-theoreti@analyses
of section 3 require a quite different set of algorithms, and it is far from clear whether our use
there ofMATHEMATICA is in any way relatively inefficient.)

Then, we determined whether all (nine of) the eigenvalues gfainéal transpositionof
the random density matrices (viewing them(@s 3) x (3 x 3) density matrices, in the manner
of [30, equation 21]) were positive (as they must be in the separable case) or not. Fer 1%1e
(Jeffreys’ prior) scenario, 83 of the 3000 density matrices had this positivity property, while
considerably more (602) possessed itifoe= 1 and still more (1296) for = g Thus, we
note an approximate decrease by a factoé%f% 0.138 in the upper bound on our suggested
probability of encountering a separable statea-visthe analysis of ZHSL.

2.3. The cases of 3 and 2x 2 quantum sytems

We, then, conducted parallel analyses to those in section 2.2 forsthg@éhd 2x 2 systems.
(For both such systems, but not higher-dimensional ones, such as B\el® positivity of the
partial transposition is a sufficient, as well as necessary condition for separability [30]. So, we
will be estimating probabilities themselves, rather than upper bounds on them.) In both cases,
we now employed 10 000 realizations. Inthe 2 case, we found 1309 separable states, using
v = ,and 4135 fon = 1, as well as 6,357 for = 3. (Our statistic of 0.4135 needs to be
compared with that of 384+ 0.002 of ZHSL—which, as noted, was based on a much larger
sample.) For the % 2 systems, the analogous results were 3633, 6564 and and 7946. So, we
would conclude, in this analytical framework, that the proportion of separable states among
the 2x 2 quantum systems should be taken to be approximately 0.36—which ibelell
the demarcation point of 0.8bovewhich ZHSL found their result of 832+ 0.002 (roughly
comparable to ours of 0.6564) to (counterintuitively) lie.

K Zyczkowski has kindly repeated the analyses reported above for the eas}(that
is, Jeffreys’ prior), using 200 000 random realizations for each of the three scenarios. The
probabilities of separability he obtained were (all digits being significant, he states): 0.022
(for the 3x 3 systems); 0.122 (& 3 systems); and 0.352 ( 2 systems). These should
be compared with our results (based on considerably smaller samples) of 0.0277, 0.1309 and
0.3633, respectively.

These various numerical results are, thus, quite supportive of our arguments and help to
fulfil the first objective of this letter of showing the dependence of estimates of the volume of
the set of separable states on the particular choice of (symmetric) Dirichlet distribution on the
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(N — 1)-dimensional simplex spanned by tNeeigenvalues of th&/ x N density matrix p).
We note again that ZHSL [1, p 889] expressed ‘surprise that the probability that a mixed state
p € Hy x H is separable exceeds fifty percent’. Thus, they would have apparently been not so
confounded if the uniform distribution on the three-simplex of eigenvalues had been replaced
by the Jeffreys’ prior, since its use yieldsrere modespercentage of approximately 35%.

Let us also note that our suggested modificatima:(%) of the ZHSL measurev(= 1)
would appear to find some support in a recent paper concerned with a parametrization (sharing
certain features with that of ZHSL) of thé x N density matrices [8]. Its authors consider the
N eigenvalues to be parametrized by the ‘squared components’ gWthel)-sphere (rather
than coordinates in thgv — 1)-dimensional simplex, as in ZHSL). As noted above, in relation
to [14], the Jeffreys’ prior is simply the uniform distribution on sucbphere—while ZHSL
used instead the uniform distribution on tienplex

3. Quantum-theoretic statistical analyses of 2 2 and 2 x 3 systems

In[4, section II.C], we presented evidence that certain statistical features of the product measure
employed by ZHSL [1] were not reproducible through the use of any of the possible (continuum
of) monotonemetrics. A similar conclusion appears to hold if one replaces the uniform
distribution in the ZHSL product measure (as we have done above in section 2) by any other
member of the family of Dirichlet distributions (1). Since Petz and&8(#] have argued that
monotone metrics are the quantum analogues of the (classically unique) Fisher information
metric, it would seem highly desirable to replace the product measures so far employed by
ones based directly on the volume elements of such metrics. (In [31], efforts were reported to
integrate the volume elements of timnimalandmaximalmonotone metrics over the convex
sets of 3x 3 and 4x 4 density matrices.) In so doing, we would avoid the nonparsimonious
‘over-parametrization’ mentioned at the outset of section 2. (However, it will be incumbent
upon us to develop a quite distinct set of computational methods than those used by ZHSL and
applied in section 2.)

We have, in fact, conducted such a series of analyses fortti#quiantum systems, based
on aMATHEMATICA program containingwo parameters of choicey andn,. The parameter
ny determines the fineness of a regular decomposition of the three-dimensional simplex—the
points of which correspond now to tlitagonalentries ofp, and not thesigenvaluesas in
section 2 and the work of ZHSL [1] and Bow4 al [8]. (Of course, both the eigenvalues
and diagonal entries of a density matrix are non-negative and sum to unity. To compute the
coordinates of the simplicial coordinates, we followed an algorithm for theamxrposition
of anintegemV into K parts, given in [32, chapter 5], takirig = 4 for our purposes, and then
dividing each of th({”f) compositions generated By.) The reciprocal of the parameteris
the distance between adjacent points of a regular square grid—having its extreme points/corners
at(3. 3. (3, -3). (—3,—3) and(—3, 3)—imposed on a circle of radius one-half centred at
the origin of the complex plane. (The off-diagonal entries of a density matrix cannot exceed
one-half in absolute value, so they must lie within this circle.)

For specific values of; andn,, within but challenging our computational capabilities,
we generated the associated three-dimensional simplicial decompositions and 12-dimensional
uniform lattices (the sixfold Cartesian product of the imposed two-dimensional square grid—
six, of course, corresponding to the number of pairs of off-diagonal entries). Then, we explicitly
enumerated all those pointsin the 15-dimensional product space parametrizingittedsity
matrices of mixed states (that is, yielding matrices having all strictly positive eigenvalues,
noting that the additional hermiticity and trace requirements are automatically satisfied by
construction). We would reject any density matrices of pure states (the totality of which
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Table 1. Quantum-theoretic statistical analyses based on the minimal, KMB and maximal
monotone metrics. The parametefsandn; determine the resolution of simplicial decompositions

and square grids for trial diagonal and off-diagonal entries, respectively. The varideleotes the
associated probability of disentanglement a@nthe averaged degree of entanglement. The only
generated density matrices which have been omitted from consideration are those which correspond
precisely to degenerate states, that is,cdet 0. The results are tabulated in increasing order of

the total number of density matrices generated—agiven in the third column.

np nz2 p Pseparable Pmin PKMB Pmax dmin dKMB dmax
23 7 1340928 356096 0.111102 0.0873186 0.0846153 0.18206 0.208022 0.248457
35 6 1425216 467424 0.193939 0.178191 0.0980763 0.250552 0.229161 0.154696
30 7 2919680 806400 0.119669 0.17601 0.749588 0.184696 0.170555 0.00940062
45 6 3033084 987484 0.220936 0.224241 0.293623 0.248278 0.243704 0.144297
4 12 4228817 1634577 0.249824 0.232509 0.309404 0.117852 0.118964 0.0886535
19 8 4443408 1284816 0.147968 0.123283 0.0554999 0.18686 0.184149 0.17713
8 10 4645163 1230411 0.11469 0.0982187 0.179838 0.18989 0.192975 0.143422
35 7 4673024 1286656 0.0927196 0.0594478 0.152368 0.220529 0.26694 0.156327
13 9 5540864 1341440 0.0756821 0.0361165 0.00173733 0.208862 0.252169 0.349782
6 11 6161152 1703808 0.114669 0.0859676 0.155728 0.187623 0.205257 0.119427
10 10 7103372 2232836 0.195802 0.188155 0.243187 0.131533 0.130076 0.103806
23 8 8026372 2286148 0.109203 0.0747959 0.000112443 0.24179 0.260264 0.296032
50 7 13522176 3705472 0.10125 0.072653 0.687 396 0.206883 0.230803 0.0422876
19 9 16603136 4096000 0.0920722 0.083066 0.0820477 0.186361 0.188775 0.190464
7 12 27658276 6897940 0.0779479 0.0553514 0.31028 0.221055 0.256207 0.0959608
35 8 28582224 8104555 0.140105 0.122355 0.199223 0.22233 0.228248 0.118103
15 10 29328236 8006017 0.120671 0.0963975 0.198144 0.194026 0.210798 0.134718
11 11 36913664 9049600 0.104142 0.0891733 0.164511 0.177627 0.179959 0.122263
25 9 37671424 9440000 0.0837076 0.0343513 0.0027555 0.202037 0.229187 0.198646
8 12 40487643 10493443 0.109191 0.0873665 0.16817 0.185359 0.201147 0.134193
27 9 47381504 11798016 0.0900729 0.0619535 0.169748 0.197141 0.219559 0.124459
6 13 47815680 12558464 0.100372 0.0710627 0.112995 0.19102 0.205754 0.149789
18 10 52099496 13733736 0.104203 0.0821789 0.0834828 0.205028 0.215253 0.198921
29 9 58888704 14645792 0.0886606 0.054769 0.00175691 0.190217 0.201052 0.150746
9 12 58900696 14677208 0.0933132 0.0726818 0.176224 0.20039 0.218327 0.131068
13 11 60453376 14847232 0.0848635 0.0569472 0.062366 0.193203 0.213676 0.208112
19 10 61584896 16090832 0.0865202 0.052442 0.155109 0.226729 0.245587 0.127568
30 9 65276416 16252736 0.0892746 0.0685755 0.0839835 0.20221 0.239333 0.0959485
32 9 79412992 19729792 0.0856388 0.0562649 0.123084 0.200964 0.232005 0.141376
21 10 83685188 21982132 0.0993573 0.062451 0.138054 0.20348 0.228876 0.114666
15 11 92920832 22811392 0.0848161 0.0550803 0.147779 0.193381 0.211392 0.152707
34 9 94713344 23606336 0.0913722 0.0638694 0.131152 0.197612 0.230137 0.2171
22 10 96084402 25272244 0.106789 0.0808784 0.0769463 0.205559 0.23114 0.187346

form a six-dimensional subspace [33]) that happened to be generated, since our measures
(see immediately below) are singular on them, as well as more generally, degenerate density
matrices, those density matrices not being of full rank (and hence having zero determinant).
However, the possibility remains—in particular, since we will be computing (nonrobust)
averages—that the behaviour of the measures for a relatively fearly degenerate states,

can strongly influence the results (cf tables 1 and 2).
By our purposeful design, the explicitly enumerated points are uniformly distributed (using
the conventional parametrization) in the 15-dimensional convex sekaf density matrices.

We took several significant steps in ®ATHEMATICA (‘backtrack’ [32, ch 27]) program to cut
down on the (potentially huge) search spaces, by utilizing the requirement that all the principal
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Table 2. Reanalyses of anomalous results (table 1qfoe= 30,17, = 7, using varying thresholds
of degeneracy, as indexed by getelow which the generated density matrices are rejected from
further consideration.

Threshold on de 1Y Pseparable Pmin PKMB DPmax dmin dgmB dpax

0 2919680 806400 0.119669 0.17601 0.749588  0.184696 0.170555 0.00940062

ﬁ x 1074 2913536 801792 0.102275 0.0664226 0.00698098 0.189535 0.201332 0.0983051

% x 1073 2856704 796672 0.123362 0.108123 0.386 157 0.180807 0.191661 0.101308
1 5 X 102 2381312 724864 0.180938 0.171253 0.260637 0.14053 0.140938 0.101575

minors of a density matrix must be non-negative [34,37, theorem 7.2.5uftisientcondition
only, of possible interest, would be that the matrixlisgonally dominan{34].) Also, in our
later, larger analyses, we exploited certain permutational symmetries.

We, then, employed aansatzof ours [31], building upon a result of Dittmann [18, p 76]
(pertaining to the Bures or minimal monotone metric) regarding the spectrum of the sum of the
operators of left and right multiplication of matrices cf [38, p 112]. Utilizing it, we assigned
as a weight to each density matrix)(generated (the eigenvalues of which are denoted by
Ai), the volume elements of certain monotone metrics of particular interest. These elements
we took to be of the formr[l4 _1f(i j)]% where (the ‘Morozova—Chentsov’ function [2, 39,

equation (3)])f (i, j) is equal to(A . in the minimal monotone cas > in the maximal

monotone case, and for the Kubo—Mon/Bogollubov (KMB) metric (assouated with the relative
entropy) [7,40, 41],29%1%9% (I this last case, if;, = A;, we takef (i, j) = A% Itis
interesting to note that the inverses of these Morozova—Chentsov functions are simply well
known indicators otentral tendencysuch as the arithmetic mean, the logarithmic mean, and
the harmonic mean [42]. Choosing a particular monotone metric is, therefore, akin to selecting
such anindicator.) We also checkeg i$atisfied the partial transposition condition, necessary
for separability.

We now report several sets of results in this regard—but let us first make some important
observations (taking into account that the determinant of a matrix is equal to the product of
its eigenvalues). Using the formulae just given, one can show [43] that fr anV density
matrix (o), the volume element of the minimal monotone metric (and also the KMB metric) is
directly proportional tc(detp)‘% , While for the maximal monotone metric, the volume element
is directly proportional tgdetp) =
(detp = 0) of the volume element of the maximal monotone metric is much more severe than
for the other two metrics under investigation. In fact, in our previous studies [6, 31], we have
concluded that the integral of the volume element of the maximal monotone metric over the
convex set of 2x 2 density matrices doe®t converge (in contrast to those for the minimal
monotone and KMB metrics). (FQ¥ > 2, however, the issue of convergence appears to
be unsettled.) So, it would seem that—unless one chooses to remove from consideration (as
was done in [6], for inferential purposes) those states the degeneracy of which exceeds some
prescribed level [6] (cf section 3.4)—one cannot, in fact, define a probability distribution based
on the maximal monotone metric. We have been able, howevey, for3, by taking the limit
of a certain ratio, to obtain associatedrginal probability distributions using the maximal
monotone metric [31].) Also, the maximal monotone metric is of substantial interest, in that
it has been characterized as the must-informativeof the monotone metrics [6, 7].

The motivating hypothesis for pursuing the analyses immediately below is that one should
be able to find values of the parametejsandn; large enough (sayz; andmsy), so that the
associated probabilities of disentanglement are within semmkeach other foany choices
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of ny andn, which dominatebothmq andm,. (It is useful to bear in mind, however, that
there is a qualitative difference between analyses basedanor odd values ofuz,, as will be
indicated.) This would indicate a convergence of these probabilities in the continuum limit as
ny andn, each become indefinitely large.

3.1. Thecase; =23,n, =7

The choice ofi, = 7 leads to a square grid, having 32 points—serving as trial off-diagonal
entries—Ilying within the circle of radius one-half. (The particular arrangement of the lattice
points, then, mandates that those density matrices we will be able to construct will have off-
diagonal entries of modulus no less thg% ~ 0.101015. This, in turn, implies that the
product of any pair of diagonal entries of the density matrices will not be less than this value.)
The numbers of density matrices we were, then, able to construct were 1340928. Of these,
356 096 passed the transposition test for separability. Applying the weights based on the three
monotone metrics considered, we obtained prior probabilities of encountering separable states
of

Pmin = 0111102 pgyp = 0.0873186  phax = 0.0846153  (2)

Of course, these three values are all considerably less than both the ZHSL statistic of
0.632 £ 0.002 and the preferred one (of the three given) of section 2 based on Jeffreys’
prior, that is~0.35.

We have also computed the ‘degree of entanglemgnt’, A, — 1 (which must lie between
zero and unity), for all the (1 340 928) density matrices and averaged the results with the same
set of three weights as used to obtain (2). The outcomes were

dpin = 0.18206 dxmp = 0.208 022 dmax = 0.248 457 3

The corresponding value obtained by ZHSL for the 2 systems was considerably smaller,
that is 0.057 [1, appendix B]. (ZHSL remarked that this quantity seemed to saturate at
approximately 0.10 for large systems.)

3.2. Thecase; =19,n, =8

Since the parameteap is now an even integer, the origif, 0) of the complex plane becomes,

by our particular mode of construction, one of the 49 intersection points of the square grid
lying within the circle of trial values for the off-diagonal entries. There are, then, no nontrivial
lower bounds imposed on the moduli of these entries, as there are for odd vatgessfch
asseverin the immediately preceding analysis of section 3.1. We obtained 4 443 408 density
matrices, of which 1284 816 satisfied the separability criterion. Use of the volume elements
of the three selected monotone metrics as weights resulted in

Pmin = 0.147 968 pxus = 0.123283 Pmax = 0.0554999 (4)
and
dpyin = 0.186 86 dgyp = 0.184 149 dpar = 0.17713 (5)

3.3. Additional (nontruncated) analyses

Continuing along the same lines as sections 3.1 and 3.2, we have conducted analyses for
additional choices of; andn,. (Itis interesting to note that unit increases:ijnare relatively

more costly computationally than in.) We report our accumulated set of results in table 1.
The analyses are listed in increasing order of the total number of density matrices generated.
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(During the course of conducting these analyses, we were able to undertake larger-sized studies,
corresponding to those listed at the bottom of the table, by taking advantage of certain inherent
permutational symmetries. An analogous assertion can be made in regard to table 4.)

As a general rule, the probability of disentanglement is greatest for the minimal monotone
metric, although still markedly less than the ZHSL resul682-+ 0.002) or that of section 2
(~0.35) based on Jeffreys’ prior. The stability of the results, on the other hand, is least for the
maximal monotone metric (in particular, notoriously so, for the cases 30,7, = 7—but
see section 3.5). This instability may be explainable by the fact that the volume element of
the maximal monotone metric, as previously noted, is not normalizable (to form a probability
distribution) over the convex sets 8f x N density matrices (in particular, fof = 4), being
highly singular near the degenerate states (while the volume elements of the minimal and
KMB metrics, though, still singular, are markedly less so, and are apparently normalizable,
extrapolating from the 2 case). So, one might rely upon either the minimal monotone metric
or KMB-metric to provide estimates of the probabilities of disentanglement (separability)—as
well as simulations of entangled systems, as ZHSL envisioned. We believe that estimates
based on the minimal monotone metric should, at least for fine enough grids and simplicial
decompositions, dominate estimates based on any other membecoftheiunof monotone
metrics. Following the arguments of Petz and Sudar [2], we contend that any estimates not
based on such metrics (such as the ‘over-parametrized’ results of ZHSL [1]—cf [8]—and those
of section 2 here) fail to meet certain natural requirements and should, thus, beuakgrano
salis

Let us also note a specific relation between the minimal monotone (Bures) metric and
the results of ZHSL. Thecalar curvatureof this metric has recently been shown to attain its
minimum GX=4¢-D for the totally mixedV-dimensional (tracial) state (corresponding to
the N x N diagonal density matrix having all its nonzero entries equ%l)mnd to diverge on
the degenerate states, those not of full rank [19]. Now, in their analysis, ZHSL concluded both
that all states in a small enough neighbourhood of the totally mixed state are separable, and that
the ‘purer a quantum state is, the smaller its probability of being separable’ [1]. Braunstein
et al have given ‘a constructive proof that all mixed stategvofubits in a sufficiently small
neighbourhood of the maximally mixed state are separable’ [35], while Vidal and Tarrach have
also reached the same conclusion [36].

3.4. Reanalysis of the anomalous= 30,n, = 7 case based on truncation of states near to
degeneracy

We have also considered the possibility of introducing a third parameter of choice, that
is detpo—in addition ton; andn,—into our computations. It would control the level of
degeneracy below which we reject for further consideration (due to the singular behaviour of the
volume elements of the monotone metrics), the (nearly degenerate) density matrices our explicit
enumeration method of section 3 generates. (This third parameter has been implicitly zero in
section 3.) We have, in fact, conducted three additional analyses for the;casg0,n, = 7,
for which we previously obtained results of a peculiar nature (table 1). The largest possible
value the determinant of a4 4 density matrix can possess(%)4 = 2—%)6 = 0.003906 25. In
the first analysis, we rejected all those density matrices with determinants Ie%glxatﬂ*“,
in the second2i56 x 1073 and in the third,zi56 x 1072. We report these results in table 2.

It appears then (based on the smallest nonzero threshold, thg{g—G ik 1074
that the previously reported (zero-threshold) anomalous behaviour for the maximal and

KMB monotone metrics was attributable to some set (the number of which we are not
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Table 3. Results ofandomsearches of the 15-dimensional parameter space, using differing values
of the radius £) of the circle in the complex plane centred (&t 0), from which the possible
off-diagonal entries of the 4 4 density matrices are chosen.

Searches 14 Pseparable  Pmin PKMB Pmax dmin dKMB dmax
847500000 49 12 0.0711773 0.0548709 0.0269786 0.197979 0.2155 0.252218

387900000 175 47 0.098809 0.0408168 0.00218239 0.1736 0.18024 0.194678
351700000 2438 619 0.0853483 0.0654313 0.180815 0.201774 0.22259 0.147024
74300000 15701 3912 0.0846071 0.0364071 0.00148944 0.17873 0.20229 0.290831

N»—‘mn—‘mwmn—‘ =

certain) of near-degenerate states which, in fact, passed the partial transposition test for
separability.

3.5. Analyses based sandomizedsearches

In the previous quantum-theoretic statistical analyses of this section, we employed systematic
explicit enumeration methods to generate 4+ density matrices, which we then tested for
separability. We embarked on such a course after initial computations indicated that it was
extremely difficult to locate the four-by-four density matrices (in the ambient 15-dimensional
parameter space) usimgndomsearch methods, in the fashion of ZHSL [1] and section 2 of
this paper. Nevertheless, at a later point, we chose to intensively pursue such a strategy.

In almost 850 000 00@b initio searches, we succeeded in obtaining (only) 61 density
matrices—of which 12 turned out to be separable. Realizing that the ‘hit rate’ would be
enhanced if, instead of searching for possible off-diagonal entries in the circle of radius one-
half in the complex plane, we also conducted analyses (though at the risk of introducing
possible biases) based on radii of one-third and one-fourth, as well (and also, in a supplementary
analysis, five-twelfths). The results are reported in table 3. (Asin section 2, standard deviations
were not determined, so no specific assessment of the number of significant digits in the
probabilistic results is immediately available.) They are, then, arguably, generally consistent
with the sets of smaller probabilities reported in table 1, in particular, for those based on the
largest number of generated density matrices (corresponding to the bottom rows of the table),
in which we naturally repose the greatest confidence.

3.6. Probabilities as a function of the participation ratio

In figure 1, we show (using bins of width 0.05), relying upon the analysis for the2Zase

ni = 22,n, = 10, the conditional probabilityX;.,) of separability based on the minimal
monotone metric, for a given participation raiadefined as the reciprocal of the trace of the
square of the density matrix [1, equation (17)]). In figure 2, we show its counterpart based
on the KMB metric. (These two figures—both having an unexplained ‘anomalous blip’ in the
interval [1.65, 1.7]—are the monotone metric analogues of figuned?(1]. Itis encouraging,
however, that the ‘blip’ does not seem to appear in analogous plots for other valugaraf

ny. The value ofR, inthe N = 2 x 2 case, must lie between 1 and 4.RIf> 3, the density
matrix must be separable [1, equation (18)].)

Zyczkowski [44], drawing upon a long list of open problems he presents, considers one of
the ‘most relevant’ to be the question of ‘whether the dependence of the conditional probability
on the participation ratio, obtained for product measures, holds also for the measures based
on the monotone metrics’. He has hypothesized the existence of certain universal/metric-
independent features in this regard, that is, he proposes that all ‘reasonable’ metrics should
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Figure 1. Conditional probability—based on the minimal monotone (Bures) metric-A-fer 2x 2
of finding a separable state, given a certain range (of width 0.05) of the participatiomkrdtio
the scenarim, = 22, n, = 10.
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Figure 2. Conditional probability—based on the KMB metric fof = 2 x 2—of finding a
separable state, given a certain range (of width 0.05) of the participationRatio the scenario
n1 = 22,ny = 10.

yield similar such plots. (He has, in fact, superimposed the figures here upon those previously
generated by him, and found a strong degree of resemblance between them.)

Infigures 3and 4, we show (again for the case= 22, n, = 10 of table 1) the probabilities
of our generating a density matrix (either separable or inseparable) based on the minimal
monotone and KMB metrics, respectively. (These are the monotone metric counterparts of
figure 2@) of [1]. Since we find more probability concentrated at smaller valugstbin did
ZHSL, these two figures help us to understand why we obtain snoadégall probabilities of
separability—in particular, less than 0.5 in tNe= 2 x 2 case—than their ‘surprising’ result
of 0.632+ 0.002.)
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Figure 3. Probability—based on the minimal monotone (Bures) metric-Afee 2 x 2 of finding
a quantum state (whether separable or not), given a certain range (of width 0.05) of the participation
ratio R, for the scenaria; = 22, n, = 10.

PHRL

Figure 4. Probability—based on the KMB metric—fay = 2 x 2 of finding a quantum state
(whether separable or not), given a certain range (of width 0.05) of the participatiorRr&tio
the scenari@; = 22 n, = 10.

3.7. The case & x 3 systems

In table 4, we report initial findings (of an, unfortunately, rather unstable nature) forsth# 2
systems—parallel to those given in table 1 for the 2 systems. (We note that the probability

of separability obtained by ZHSL [1] for the 2 3 systems was.884+ 0.002 and, with the
alternative use of the Jeffreys’ prior in section 2.3, 0.122.) There are now six diagonal entries
(associated witle,) and 15 pairs of off-diagonal entries (associated withto consider, so
computational demands are substantially increased. We, of course, expect the probabilities of
separability to béessthan the corresponding ones in thex2 case reported in table 1, and

this is certainly the case for the most extensive analysis{20,n, = 8).
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Table 4. Analogues for the X 3 systems of the results of table 1.

ni n2 p Pseparable  Pmin PKMB Pmax dmin dxmB dmax

8 8 7581 5205 0.643091 0.654 085 0.678443 0.0254769 0.024673 0.0230053
11 6 35268 9828 0.000171812 0.000192414 0.000212583 0.592094 0.592009 0.591929
14 6 149607 59727 0.368812 0.425491 0.46159 0.147718 0.118212 0.10094
15 6 158522 59185 0.147933 0.152787 0.128 344 0.299006 0.281777 0.235139
13 9 245760 8448 0.034375 0.034375 0.034375 0.185994 0.185994 0.185994

98 235616 65840 0.234146 0.262 858 0.266 667 0.0803952 0.0654659 0.0637942
15 9 245760 768 0.003125 0.003125 0.003125 0.182635 0.182635 0.182635
14 9 368640 9600 0.0260417 0.0260417 0.0260417 0.188924 0.188924 0.188924
16 6 370479 131055 0.00584908 0.0172682 0.359634 0.581471 0.558051 0.119815
17 6 557304 164264 0.000248636 0.000243731 0.000240557 0.59097 0.591328 0.591453
10 8 579186 150090 0.173755 0.174011 0.174992 0.184237 0.194057 0.195405
12 8 1352182 303022 0.0463408 0.0872936  0.19522 0.383656 0.307713 0.117593
11 8 1593588 520068 0.299328 0.309032 0.326 253 0.0995446 0.096 8566 0.0940759
22 6 2875965 974818 0.0160034 0.125932 0.0721558 0.562473 0.374128 0.259626
24 6 3870989 1360213 0.192395 0.19933 0.314 609 0.292782 0.268782 0.140023
13 8 4408872 881397 0.0551892 0.0659333 0.256791 0.294217 0.259817 0.0915806
14 8 6073071 882781 0.000948857 0.000644427 0.00952389 0.61686 0.476343 0.359429
16 8 7373379 1609392 0.103614 0.121313 0.203796 0.204274 0.183523 0.119163
26 6 7696926 2514130 0.1132 0.111881 0.0999924 0.368272 0.289389 0.229179
15 8 15603746 2109650 0.000899908 0.00162305 0.00114651 0.63942 0.599576 0.461553
17 8 19413528 3311159 0.054504 0.0562656 0.0398168 0.323892 0.298912 0.259056
18 8 29075408 5061131 0.081246 0.0737912 0.0958513 0.2304 0.215317 0.181838
20 8 45002652 7755473 0.00401427 0.0131804 0.0525791 0.606695 0.487055 0.206391

The somewhat counterintuitive observation thatfpe 14, the choice of, = 8 leads to
many more generated density matrices thamfoe 9, is comprehensible in that only for even
values ofi, are no nonzero lower bounds placed on the possible absolute values of off-diagonal
entries. We were not able for amg = 7 scenario—due to memory limitations—to find a
large enough,, for which any density matrices at all were generated. We also possess no
immediate explanation for the equality of the thpe@ndd for the three cases involving = 9.
(The relatively large probabilities for the scenarig,= 24, n, = 6 may be attributable to a
‘number-theoretic’ effect, given that 24 is exactly divisible by six.)

A randomization approach, such as we pursued in section 3.5 forkl2esgstems, would
clearly yield even fewer density matrices for a given number of independent searches than
there (table 3).

4. Concluding remarks

We have presented in this study, two forms of evidence (one essentially classical and the other
quantum-theoretic in nature) that the specific choice of (product) measure of ZHSL [1]led them
to substantially overestimate the extent to which quantum systems—in particuldr=fdt x 2

and 2x 3—should be considered to possess, in some natypabri sense, the property of
separability or disentanglement. The preponderance of evidence adduced indicates that the
probability of separability for thé&v = 2 x 2 systems, based on the minimal monotone (Bures)
metric is no greater than 11%—and if one views the evidence somewhat less conservatively,
perhaps less than 10%. In turn, estimates founded on any other member of the continuum
of monotone metrics should be lower still. For instance, for the Kubo—Mori/Bogoliubov
metric [7,40,41], an estimate of 9% would seem conservatively high. Apparentiyakienal
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monotone metric—the volume element of which possesses a high degree of singularity on the
degenerate states (get= 0), associated with its conjectured nonnormalizability over the
15-dimensional convex set of states—must, in some (perhaps limiting) sense, fulowsr a
bound on the probability of separability. This bound would have to be strictly greater than
zero, if the related arguments made in [1, 35, 36, 44], in fact, apply.

Let us also note that in continuing work, pertaining to [24], we have found a quite
interesting distinguished role (that of yielding both timénimaxand maximinin universal
quantum coding) for a monotone metric that has not apparently previously been noted. Its
associated Morozova—Chentsov function,

e AR (6)

is simply the reciprocal of thexponentiabridentricmean [42] oft; and ;. The behaviour of
the related monotone metric appears to be quite close to that of the minimal (Bures) monotone
metric.

The need for additional computational work (possibly utilizing supercomputers) is
indicated, in regard to what we contend are the theoretically superior (properly parametrized)
guantum-theoretic analyses of section 3, in order to more closely pinpoint estimates. Such
analyses could be based on finer simplicial decompositions for the trial diagonal entries (that
is, higher values ofi1) and finer square grids for the trial off-diagonal entries (that is, higher
values ofn,), than those reported in section 3, and/or possibly randomization procedures, as
in section 3.5.

At several points in this paper, we have indicated that the analyses of ZHSL [1] were ‘over-
parametrized’, in thaW? + N — 1 parameters were employed, rather th&n- 1, as is clearly
most natural for theV x N density matrices (which form av? — 1)-dimensional convex set).
However, in a personal communication, M Byrd has asserted that this bothersome feature could
be avoided, sinc& — 1 Euler angles (in addition to the ‘phase’, as is well known) can be seen
to, in fact, vanish in the ZHSL-type representation [1, equation (25)] of a density matrix in the
product formU’DU. Byrd has been able to explicitly show this in the case- 3, based on
the Euler angle parametrization given in [45] (the anglaad¢ vanishing) and contends that
analogous phenomena must hold #or= 3, as well (cf [8]). (This vanishing does not appear
to occur with the particular Euler angle parametrizations (associated with Hurwitz) used by
ZHSL, given in [29,46]. Byrd suggests that this is because the ‘diagonal matrices that make
up the maximal torus’ do not appear on the end, while if they did, they would commute with
the diagonalized density matrix.) This highly interesting line of thought would suggest that
the analyses of ZHSLZyczkowski [44] and those of section 2 here (but, of course, not those
‘properly parametrized’ ones of section 3) should be repeated in such a more parameter-wise
economical framework, and the new results compared with those previously obtained, to see
whether any differences are found (cf [47]).

Acknowledgments

I' would like to express appreciation to the Institute for Theoretical Physics for computational
support in this research, and toZgczkowski for several comments, as well as providing the
simulations reported at the end of section 2, pointing out to me [16], and suggesting that it
would be of considerable interest to ‘bin’ the results here, thus, leading to the four included
figures. | am also grateful to M Byrd for responding to my queries regarding the issue of
‘over-parametrization’ in the work of ZHSL.



A priori probabilities of separable quantum states 5275

References

[1] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein 1988s. RevA 58 883
[2] Petz D and Suar C 1996J. Math. Phys37 2662
[3] Wootters W K 1990Found. Phys20 1365
[4] Slate P B 1998SU(N) x Sy-invariant eigenspaces @ x N mean density matriceBreprint quant-
ph/9802019
[5] Davies C 1998\ew Scil15832
[6] Slate P B 1998Phys. LettA 2471
[7] Petz D and Toth G 199Bett. Math. Phys27 205
[8] Boya L J, Byrd M, Mims M and SudarshaE C G 1998 Density matrices and geometric phases:fetate
systemdPreprint quant-ph/9810084
[9] Wilks S S 1962Mathematical Statistic€New York: Wiley)
[10] Fergusa T S 1973Ann. Statl 209
[11] Frieden B R and Soffer B H 199%hys. ReVE 522274
[12] Frieden B R 1991Probability, Statistical Optics, and Data TestifBerlin: Springer)
[13] Berge J O and BernamlJ M 1992Biometrika79 25
[14] Kass R E 198%tat. Sci4 188
[15] Bernarad J M 1989Stat. Sci4 227
[16] Antonelli P L and Strobeck C 197&dv. Appl. Prob9 238
[17] Braunstem S L and Milbun G J 1995Phys. RevA 511820
[18] Dittmann J 199%em. Sophus Li&73
[19] Dittmann J 1998 The scalar curvature of the Bures metric on the space of density mitepeast quant-
ph/9810012
[20] Hiai F, Petz D and Toth G 19%tat. Sci. Math. Hung2 235
[21] Clarke B S and Barr A R 1990IEEE Trans. Inf. Theor®6 453
[22] Clarke B S and Barmo A R 1994J. Stat. Plann. Infed1 37
[23] Rissanen J 199EE Trans. Inf. Theor$2 40
[24] Krattenthaler C and Slaté® B 1996 Asymptotic redundancies for universal quantum coBimgrint quant-
ph/9612043
[25] Jozsa R, Horodecki M, Horodecki P and Horodecki R 1P8§s. Rev. LetB11714
[26] Clarke B S 1996]. Am. Stat. Ass081173
[27] Balasubramanian V 199¥eural Comput9 349
[28] Balasubramanian V 199daximum Entropy and Bayesian MethadsK M Hanson ad R N Silver (Dordrecht:
Kluwer) p 27
[29] Zyczkowski K and K& M 1994J. Phys. A: Math. Ger27 4235
[30] Horodecki M, Horodecki P and Horodecki R 19B6ys. LettA 2231
[31] Slate P B 1998 Volume elements of monotone metrics orvihen density matrices as densities-of-states for
thermodynamic purposes.Rreprintquant-ph/9802019
[32] Wiilf Hand Nijenhuis A 1978 ombinatorial Algorithms for Computers and Calculat@ew York: Academic)
[33] Mkrtchian V E and Chaltykia V O 19870pt. Commun3 239
[34] Hom R A and Johnso C A 1985Matrix Analysis(Cambridge: Cambridge University Press)
[35] Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1998 Separability of very noisy mixed
states and implications for NMR quantum computifrgprint quant-ph/9811018
[36] Vidal G and Tarrach R 199Bhys. RevA 59141
(Vidal G and Tarrach R 1998 Robustness of entanglefegirint quant-ph/9806094)
[37] Bloore F J 1976l. Phys. A: Math. Gerf 2059
[38] Bhatia R 199'Matrix Analysis(New York: Springer)
[39] Petz D 1996 inear Algebr. Appl24481
[40] Petz D 19941. Math. Phys35 780
[41] Balian R, Alhassid Y and Reinhardt H 1986ys. Rep1311
[42] QiF 1998Proc. R. SocA 4542723
[43] Slate P B 1996J. Phys. A: Math. Ger9L601
[44] Zyczkowski K 1999 On the volume of the set of mixed entangled stat@sefrint quant-ph/9902050
[45] Byrd M 1998J. Math. Phys396125
[46] Pazniak M, Zyczkowski K and K& M 1998J. Phys. A: Math. Ger811059
[47] Slate P B 1999 ‘Natural measures’ over quantum systems and comparisons of their monotonicity properties
Preprintquant-ph/9904014



