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Abstract. Życzkowski, Horodecki, Sanpera and Lewenstein (ZHSL) recently proposed a ‘natural
measure’ on theN -dimensional quantum systems, but expressed surprise when it led them to
conclude that forN = 2× 2, disentangled (separable) systems are more probable (0.632± 0.002)
in nature than entangled ones. We contend, however, that ZHSL’s (rejected) intuition has, in
fact, a sound theoretical basis, and that thea priori probability of disentangled 2× 2 systems
should more properly be viewed as (considerably) less than 0.5. We arrive at this conclusion
in two quite distinct ways, the first based on classical and the second, quantum considerations.
Both approaches, however, replace (in whole or part) the ZHSL (product) measure by ones based
on the volume elements ofmonotonemetrics, which in the classical case amounts to adopting the
Jeffreys’ prior of Bayesian theory. Only the quantum-theoretic analysis—which yields the smallest
probabilities of disentanglement—uses theminimumnumber of parameters possible, that isN2−1,
as opposed toN2 + N − 1 (although this ‘over-parametrization’, as recently indicated by Byrd,
should be avoidable). However, despite substantial computation, we are not able to obtain precise
estimates of these probabilities and the need for additional (possibly supercomputer) analyses is
indicated—particularly so for higher-dimensional quantum systems (such as the 2×3 ones, which
we also study here).

1. Introduction

In a recent paper [1],̇Zyczkowski, Horodecki, Sanpera and Lewenstein (ZHSL) [1] sought to
estimate ‘how many entangled (disentangled) states exist among all quantum states’. They
gave three principal reasons for their study: (1) to answer the question ‘is the worldmore
classicalor more quantum?’; (2) to know, for the purposes of numerical simulation, ‘to what
extent entangled quantum systems may be considered as typical’; and (3) ‘to investigate how
frequently certain nonseparable states, ‘peculiarly’ admitting time reversal in one subsystem,
arise’. In response to the first query, ZHSL concluded—to their ‘surprise’ [1, p 889]—that
although the (higher-dimensional) ‘world’ is, in general, more quantum than classical, this is
not so for the 2× 2 quantum systems. We contend here, however, that alternative analyses
based on the concept ofmonotonemetrics on classical and quantum systems [2], lead to the
elimination of this exception to their general rule.

In their investigation, ZHSL obtained a variety of both analytical and numerical bounds
on the volumes of the sets of separable states for various dimensions, using what they asserted
was a ‘natural measure’ on the space of density matrices (cf [3]). In the first analytical part of
this paper (section 2), we indicate an essential degree of arbitrariness in the choice of measure
by ZHSL, and its consequences for the results they have reported (cf [4]). We then argue
in favour of a specific alternative—well-founded on statistical principles—which leads to a
markedlysmallerprobability of encountering a disentangled (separable) state. (The numerical
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results we report are for the 2× 2, 2× 3 and 3× 3 quantum systems.) Then, in section 3, we
study the use of methods more fundamentally quantum-theoretic in nature—requiring us to
develop a quite distinct set of procedures than those used by ZHSL and followed in section 2.
(Due to the associated large computational demands, we have primarily limited our analyses to
the 2× 2 systems, but in section 3.6 we do, in fact, initiate a parallel investigation of the 2× 3
systems.) We obtain for each of more than 30 pairs of parameters, determining the fineness
of approximating square grids and three-dimensional simplicial decompositions, a set of three
probabilities of disentanglement (table 1), each probability being based on a distinct form of
monotone metric [6,7]. The sets are intended to determine a range of values within which any
suitable candidate (meeting underlying natural criteria ofmonotonicity) for the ‘true’a priori
probability of disentanglement must lie. Essentially all such probabilities we obtain turn out to
be considerably smaller than both the result of ZHSL (0.632± 0.002) and the alternative to it
(≈0.35) we promote in section 2, based on the Jeffreys’ prior of Bayesian theory. However, the
need for additional computational work is indicated in order to sharpen the estimates reported
in sections 3.1–3.3, as well as to extend our general approach to higher-dimensional quantum
systems. (We are reminded, to some degree, of the computational/combinatorial challenges
of lattice gauge theory [5].) In section 3.5, we switch from the explicit enumeration approach
(based on regular grids and simplicial decompositions) to a randomization methodology
(such as ZHSL employed in their studies)—but also find this to be highly computationally
demanding, since we must search in a high-dimensional parameter space for those particular
points corresponding to density matrices.

A conservative evaluation of the accumulated evidence of the multiple quantum-theoretic
analyses we report (tables 1–3) indicates that thea priori probability of disentanglement for the
2×2 systems should be regarded—using any of a continuum of possible acceptable standards,
in particular that provided by theminimalmonotone (Bures) metric—asno morethan 11%. As
to a lower bound, on the other hand, on the probability of separability, it remains an unsettled
issue as to whether or not themaximalmonotone metric should be viewed as furnishing a
bound strictly greater than zero.

In our concluding remarks (section 4), we draw attention to an interesting recent analysis
of M Byrd (personal communication), bearing upon the issue of whether or not the use of
‘over-parametrizations’ by ZHSL and (following them) by us in section 2, can be averted.

2. Semiclassical statistical analyses of 3× 3, 2× 3 and 2× 2 quantum systems

ZHSL [1] used as a measure on the space ofN × N density matrices the product of the
Haar measure for the unitary groupU(N) and the uniform distribution on the(N − 1)-
dimensional simplex spanned by theN eigenvalues of the density matrix. Now, we see no
basis (within the semiclassical framework adopted by ZHSL) for questioning the use of the
Haar measure. However, the selection of the uniform distribution on the simplex appears
not to be so compelling, as it lacks as convincing a rationale as the group-theoretic argument
for the Haar measure (cf [8]). Also, we must point out that the analyses of ZHSL are based
on ‘over-parametrizations’, sinceN2 + N − 1 parameters are used, while the convex set of
N × N density matrices is only(N2 − 1)-dimensional in nature. Though we adhere to this
over-parametrization in the analyses of this section, in section 3 we revert to the more natural
and conventional form.

The uniform distribution on the(N−1)-dimensional simplex (p1 + · · ·+pN = 1;pi > 0)
can be considered to be that specific member of the (continuous) family of Dirichlet probability
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distributions [9,10, section 7.7],

0(ν1 + · · · + νN)
0(ν1) . . . 0(νN)

p
ν1−1
1 . . . p

νN−1−1
N−1 (1− p1− · · · − pN−1)

νN−1 ν1 > 0, . . . , νN > 0 (1)

which has all itsN parameters (ν) set equal to unity. The family of Dirchlet distributions is
conjugate, in that if one selects aprior distribution belonging to it, then, through the application
of Bayes’ rule to observations drawn from a multinomial distribution, one arrives at aposterior
distribution which is also within the family.

2.1. Jeffreys’ prior

Of strongest interest, however, for our purposes here, is that the principle of reparametrization
invariance (based on theFisher information[11,12]) leads to the special case (Jeffreys’ prior)
in which (1) has all itsN parameters set equal toone-half[13, 14, equation (3.7)] and not
unity, as for the uniform distribution. ‘The main intuitive motivation for Jeffreys’ priors is
not their invariance, which is certainly a necessary, but in general far from sufficient condition
to determine a sensible reference prior; what makes Jeffreys’ priors unique is that they are
uniform measures in a particular metric which may be defended as the ‘natural’ choice for
statistical inference’ [15]. By way of illustration, Kass [14, section 2] (cf [16]), using the
transformationspi = 2z2

i , demonstrates how the Jeffreys’ prior for the trinomial model
(N = 3) on the two-dimensional simplex can be (making use of spherical polar coordinates)
transformed to the uniform distribution on the positive-octant portion of the two-dimensional
sphere,z2

1 + z2
2 + z2

3 = 4 of radius 2. (Braunstein and Milburn [17] show that for two-level
quantumsystems, statistical distinguishability is just the (Bures/minimal monotone) metric on
the surface of the unit sphere infour dimensions. In contrast, the space ofn-level quantum
systems is ‘not a space of constant curvature forn > 2 and not even a locally symmetric space.
The physical meaning of this fact seems to be an interesting open question’ [18] (cf [19,20]).)

Clarke and Barron [21,22] (cf [23]) have established that Jeffreys’ priors (the normalized
volume elements of Fisher information metrics) asymptotically maximize Shannon’s mutual
information between a sample of sizen and the parameter, and that Jeffreys’ prior is the
unique continuous prior that achieves the asymptotic minimax risk when the loss function
is the Kullback–Leibler distance between the true density and the predictive density. (The
possibility of extending the ‘universal coding’ results of Clarke and Barron to thequantum
domain, has been investigated in [24] (cf [25]).) Clarke [26] asserts that ‘Jeffreys’ prior can
be justified by four distinct arguments’. In addition, Balasubramanian [27] ‘cast parametric
model selection as a disordered statistical mechanics on the space of probability distributions’
and ‘derived and discussed a novel interpretation of Jeffreys’ prior as the uniform prior on the
probability distributions indexed by a parametric family’ (cf [28]).

Now, it is of interest to note that in the limit in which theN parameters (ν) of the Dirichlet
distribution (1) all go to zero, the distribution becomes totally concentrated on the pure states
of theN -dimensional quantum system. Since ZHSL showed that in ‘the subspace of all pure
states, the measure of separable states is equal to zero’ [1, p 886], we would anticipate, making
use of a continuity argument, that the measure or volume of the set of separable states would
increase if allN parameters of (1) were fixed at one-half (Jeffreys’ prior), but still be less than
if they were all taken to be equal to unity, etc. (‘The purer a quantum state is, the smaller its
probability of being separable’ [1, p 891].)
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2.2. The case of 3× 3 quantum systems

We have, in fact, tested these last contentions regarding competing measures of separability,
through numerical means, first, generating a set of 3000 random 9×9 unitary matrices (N = 9),
following the (Hurwitz/Euler angle) prescription given in [29, equations (3.1)–(3.5)]. From
it, we produced (in the manner of ZHSL [1, equation (34)]) three sets of 3000 9× 9 density
matrices: one set based on the selectionν1 = · · · = ν9 = 1

2; another forν1 = · · · = ν9 = 1
(as, in effect, done in [1]); and a third forν1 = . . . = ν9 = 3

2. (Random realizations of the
Dirichlet distributions were generated based on the fact that they can be considered to be joint
distributions of (univariate) gamma distributions [9, 10]. The 3000 instances we obtain are
obviously far fewer in number than the ‘several millions’ ZHSL [1] apparently employed as
a general rule in their series of analyses of quantum systems of various dimensions. This is
primarily due to our full reliance onMATHEMATICA, while ZHSL—as KŻyczkowski wrote
in a personal communication—employedFORTRAN routines for random number generation.
Nevertheless, as noted immediately below,Życzkowski, using his speedier routines, has
confirmed the main aspects of our analysis. Additionally, thequantum-theoreticanalyses
of section 3 require a quite different set of algorithms, and it is far from clear whether our use
there ofMATHEMATICA is in any way relatively inefficient.)

Then, we determined whether all (nine of) the eigenvalues of thepartial transpositionsof
the random density matrices (viewing them as(3×3)×(3×3) density matrices, in the manner
of [30, equation 21]) were positive (as they must be in the separable case) or not. For theν = 1

2
(Jeffreys’ prior) scenario, 83 of the 3000 density matrices had this positivity property, while
considerably more (602) possessed it forν = 1 and still more (1296) forν = 3

2. Thus, we
note an approximate decrease by a factor of83

602 ≈ 0.138 in the upper bound on our suggested
probability of encountering a separable statevis-á-vis the analysis of ZHSL.

2.3. The cases of 2× 3 and 2× 2 quantum sytems

We, then, conducted parallel analyses to those in section 2.2 for the 2× 3 and 2× 2 systems.
(For both such systems, but not higher-dimensional ones, such as the 3×3, the positivity of the
partial transposition is a sufficient, as well as necessary condition for separability [30]. So, we
will be estimating probabilities themselves, rather than upper bounds on them.) In both cases,
we now employed 10 000 realizations. In the 2×3 case, we found 1309 separable states, using
ν = 1

2, and 4135 forν = 1, as well as 6,357 forν = 3
2. (Our statistic of 0.4135 needs to be

compared with that of 0.384± 0.002 of ZHSL—which, as noted, was based on a much larger
sample.) For the 2× 2 systems, the analogous results were 3633, 6564 and and 7946. So, we
would conclude, in this analytical framework, that the proportion of separable states among
the 2× 2 quantum systems should be taken to be approximately 0.36—which is wellbelow
the demarcation point of 0.5,abovewhich ZHSL found their result of 0.632± 0.002 (roughly
comparable to ours of 0.6564) to (counterintuitively) lie.

K Życzkowski has kindly repeated the analyses reported above for the caseν = 1
2 (that

is, Jeffreys’ prior), using 200 000 random realizations for each of the three scenarios. The
probabilities of separability he obtained were (all digits being significant, he states): 0.022
(for the 3× 3 systems); 0.122 (2× 3 systems); and 0.352 (2× 2 systems). These should
be compared with our results (based on considerably smaller samples) of 0.0277, 0.1309 and
0.3633, respectively.

These various numerical results are, thus, quite supportive of our arguments and help to
fulfil the first objective of this letter of showing the dependence of estimates of the volume of
the set of separable states on the particular choice of (symmetric) Dirichlet distribution on the
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(N − 1)-dimensional simplex spanned by theN eigenvalues of theN ×N density matrix (ρ).
We note again that ZHSL [1, p 889] expressed ‘surprise that the probability that a mixed state
ρ ∈ H2×H2 is separable exceeds fifty percent’. Thus, they would have apparently been not so
confounded if the uniform distribution on the three-simplex of eigenvalues had been replaced
by the Jeffreys’ prior, since its use yields amore modestpercentage of approximately 35%.

Let us also note that our suggested modification (ν = 1
2) of the ZHSL measure (ν = 1)

would appear to find some support in a recent paper concerned with a parametrization (sharing
certain features with that of ZHSL) of theN ×N density matrices [8]. Its authors consider the
N eigenvalues to be parametrized by the ‘squared components’ of the(N − 1)-sphere (rather
than coordinates in the(N−1)-dimensional simplex, as in ZHSL). As noted above, in relation
to [14], the Jeffreys’ prior is simply the uniform distribution on such asphere—while ZHSL
used instead the uniform distribution on thesimplex.

3. Quantum-theoretic statistical analyses of 2× 2 and 2× 3 systems

In [4, section II.C], we presented evidence that certain statistical features of the product measure
employed by ZHSL [1] were not reproducible through the use of any of the possible (continuum
of) monotonemetrics. A similar conclusion appears to hold if one replaces the uniform
distribution in the ZHSL product measure (as we have done above in section 2) by any other
member of the family of Dirichlet distributions (1). Since Petz and Sudár [2] have argued that
monotone metrics are the quantum analogues of the (classically unique) Fisher information
metric, it would seem highly desirable to replace the product measures so far employed by
ones based directly on the volume elements of such metrics. (In [31], efforts were reported to
integrate the volume elements of theminimalandmaximalmonotone metrics over the convex
sets of 3× 3 and 4× 4 density matrices.) In so doing, we would avoid the nonparsimonious
‘over-parametrization’ mentioned at the outset of section 2. (However, it will be incumbent
upon us to develop a quite distinct set of computational methods than those used by ZHSL and
applied in section 2.)

We have, in fact, conducted such a series of analyses for the 2×2 quantum systems, based
on aMATHEMATICA program containingtwo parameters of choice,n1 andn2. The parameter
n1 determines the fineness of a regular decomposition of the three-dimensional simplex—the
points of which correspond now to thediagonalentries ofρ, and not theeigenvalues, as in
section 2 and the work of ZHSL [1] and Boyaet al [8]. (Of course, both the eigenvalues
and diagonal entries of a density matrix are non-negative and sum to unity. To compute the
coordinates of the simplicial coordinates, we followed an algorithm for the nextcomposition
of an integerN intoK parts, given in [32, chapter 5], takingK = 4 for our purposes, and then
dividing each of the

(
N+3
N

)
compositions generated byN .) The reciprocal of the parametern2 is

the distance between adjacent points of a regular square grid—having its extreme points/corners
at ( 1

2,
1
2), (

1
2,− 1

2), (− 1
2,− 1

2) and(− 1
2,

1
2)—imposed on a circle of radius one-half centred at

the origin of the complex plane. (The off-diagonal entries of a density matrix cannot exceed
one-half in absolute value, so they must lie within this circle.)

For specific values ofn1 andn2, within but challenging our computational capabilities,
we generated the associated three-dimensional simplicial decompositions and 12-dimensional
uniform lattices (the sixfold Cartesian product of the imposed two-dimensional square grid—
six, of course, corresponding to the number of pairs of off-diagonal entries). Then, we explicitly
enumerated all those points in the 15-dimensional product space parametrizing the 4×4 density
matrices of mixed states (that is, yielding matrices having all strictly positive eigenvalues,
noting that the additional hermiticity and trace requirements are automatically satisfied by
construction). We would reject any density matrices of pure states (the totality of which
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Table 1. Quantum-theoretic statistical analyses based on the minimal, KMB and maximal
monotone metrics. The parametersn1 andn2 determine the resolution of simplicial decompositions
and square grids for trial diagonal and off-diagonal entries, respectively. The variablep denotes the
associated probability of disentanglement andd, the averaged degree of entanglement. The only
generated density matrices which have been omitted from consideration are those which correspond
precisely to degenerate states, that is, detρ = 0. The results are tabulated in increasing order of
the total number of density matrices generated—given in the third column.

n1 n2 ρ ρseparable pmin pKMB pmax dmin dKMB dmax

23 7 1 340 928 356 096 0.111 102 0.087 3186 0.084 615 3 0.182 06 0.208 022 0.248 457
35 6 1 425 216 467 424 0.193 939 0.178 191 0.098 076 3 0.250 552 0.229 161 0.154 696
30 7 2 919 680 806 400 0.119 669 0.176 01 0.749 588 0.184 696 0.170 555 0.009 400 62
45 6 3 033 084 987 484 0.220 936 0.224 241 0.293 623 0.248 278 0.243 704 0.144 297
4 12 4 228 817 1 634 577 0.249 824 0.232 509 0.309 404 0.117 852 0.118 964 0.088 653 5

19 8 4 443 408 1 284 816 0.147 968 0.123 283 0.055 499 9 0.186 86 0.184 149 0.177 13
8 10 4 645 163 1 230 411 0.114 69 0.098 2187 0.179 838 0.189 89 0.192 975 0.143 422

35 7 4 673 024 1 286 656 0.092 7196 0.059 4478 0.152 368 0.220 529 0.266 94 0.156 327
13 9 5 540 864 1 341 440 0.075 6821 0.036 1165 0.001 737 33 0.208 862 0.252 169 0.349 782
6 11 6 161 152 1 703 808 0.114 669 0.085 9676 0.155 728 0.187 623 0.205 257 0.119 427

10 10 7 103 372 2 232 836 0.195 802 0.188 155 0.243 187 0.131 533 0.130 076 0.103 806
23 8 8 026 372 2 286 148 0.109 203 0.074 7959 0.000 112 443 0.241 79 0.260 264 0.296 032
50 7 13 522 176 3 705 472 0.101 25 0.072 653 0.687 396 0.206 883 0.230 803 0.042 287 6
19 9 16 603 136 4 096 000 0.092 0722 0.083 066 0.082 047 7 0.186 361 0.188 775 0.190 464
7 12 27 658 276 6 897 940 0.077 9479 0.055 3514 0.310 28 0.221 055 0.256 207 0.095 960 8

35 8 28 582 224 8 104 555 0.140 105 0.122 355 0.199 223 0.222 33 0.228 248 0.118 103
15 10 29 328 236 8 006 017 0.120 671 0.096 3975 0.198 144 0.194 026 0.210 798 0.134 718
11 11 36 913 664 9 049 600 0.104 142 0.089 1733 0.164 511 0.177 627 0.179 959 0.122 263
25 9 37 671 424 9 440 000 0.083 7076 0.034 3513 0.002 755 5 0.202 037 0.229 187 0.198 646
8 12 40 487 643 10 493 443 0.109 191 0.087 3665 0.168 17 0.185 359 0.201 147 0.134 193

27 9 47 381 504 11 798 016 0.090 0729 0.061 9535 0.169 748 0.197 141 0.219 559 0.124 459
6 13 47 815 680 12 558 464 0.100 372 0.071 0627 0.112 995 0.191 02 0.205 754 0.149 789

18 10 52 099 496 13 733 736 0.104 203 0.082 1789 0.083 482 8 0.205 028 0.215 253 0.198 921
29 9 58 888 704 14 645 792 0.088 6606 0.054 769 0.001 756 91 0.190 217 0.201 052 0.150 746
9 12 58 900 696 14 677 208 0.093 3132 0.072 6818 0.176 224 0.200 39 0.218 327 0.131 068

13 11 60 453 376 14 847 232 0.084 8635 0.056 9472 0.062 366 0.193 203 0.213 676 0.208 112
19 10 61 584 896 16 090 832 0.086 5202 0.052 442 0.155 109 0.226 729 0.245 587 0.127 568
30 9 65 276 416 16 252 736 0.089 2746 0.068 5755 0.083 983 5 0.202 21 0.239 333 0.095 948 5
32 9 79 412 992 19 729 792 0.085 6388 0.056 2649 0.123 084 0.200 964 0.232 005 0.141 376
21 10 83 685 188 21 982 132 0.099 3573 0.062 451 0.138 054 0.203 48 0.228 876 0.114 666
15 11 92 920 832 22 811 392 0.084 8161 0.055 0803 0.147 779 0.193 381 0.211 392 0.152 707
34 9 94 713 344 23 606 336 0.091 3722 0.063 8694 0.131 152 0.197 612 0.230 137 0.2171
22 10 96 084 402 25 272 244 0.106 789 0.080 8784 0.076 946 3 0.205 559 0.231 14 0.187 346

form a six-dimensional subspace [33]) that happened to be generated, since our measures
(see immediately below) are singular on them, as well as more generally, degenerate density
matrices, those density matrices not being of full rank (and hence having zero determinant).
However, the possibility remains—in particular, since we will be computing (nonrobust)
averages—that the behaviour of the measures for a relatively fewnearly degenerate states,
can strongly influence the results (cf tables 1 and 2).

By our purposeful design, the explicitly enumerated points are uniformly distributed (using
the conventional parametrization) in the 15-dimensional convex set of 4× 4 density matrices.
We took several significant steps in ourMATHEMATICA (‘backtrack’ [32, ch 27]) program to cut
down on the (potentially huge) search spaces, by utilizing the requirement that all the principal
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Table 2. Reanalyses of anomalous results (table 1) forn1 = 30,n2 = 7, using varying thresholds
of degeneracy, as indexed by detρ, below which the generated density matrices are rejected from
further consideration.

Threshold on detρ ρ ρseparable pmin pKMB pmax dmin dKMB dmax

0 2 919 680 806 400 0.119 669 0.176 01 0.749 588 0.184 696 0.170 555 0.009 400 62
1

256 × 10−4 2 913 536 801 792 0.102 275 0.066 4226 0.006 980 98 0.189 535 0.201 332 0.098 305 1
1

256 × 10−3 2 856 704 796 672 0.123 362 0.108 123 0.386 157 0.180 807 0.191 661 0.101 308
1

256 × 10−2 2 381 312 724 864 0.180 938 0.171 253 0.260 637 0.140 53 0.140 938 0.101 575

minors of a density matrix must be non-negative [34,37, theorem 7.2.5]. (Asufficientcondition
only, of possible interest, would be that the matrix isdiagonally dominant[34].) Also, in our
later, larger analyses, we exploited certain permutational symmetries.

We, then, employed anansatzof ours [31], building upon a result of Dittmann [18, p 76]
(pertaining to the Bures or minimal monotone metric) regarding the spectrum of the sum of the
operators of left and right multiplication of matrices cf [38, p 112]. Utilizing it, we assigned
as a weight to each density matrix (ρ) generated (the eigenvalues of which are denoted by
λi), the volume elements of certain monotone metrics of particular interest. These elements
we took to be of the form [54

i,j=1f (i, j)]
1
2 , where (the ‘Morozova–Chentsov’ function [2,39,

equation (3)])f (i, j) is equal to 2
(λi+λj )

in the minimal monotone case,(λi+λj )2λiλj
in the maximal

monotone case, and for the Kubo–Mori/Bogoliubov (KMB) metric (associated with the relative
entropy) [7, 40, 41],logλi−logλj

λi−λj . (In this last case, ifλi = λj , we takef (i, j) = λ−1
i . It is

interesting to note that the inverses of these Morozova–Chentsov functions are simply well
known indicators ofcentral tendency, such as the arithmetic mean, the logarithmic mean, and
the harmonic mean [42]. Choosing a particular monotone metric is, therefore, akin to selecting
such an indicator.) We also checked ifρ satisfied the partial transposition condition, necessary
for separability.

We now report several sets of results in this regard—but let us first make some important
observations (taking into account that the determinant of a matrix is equal to the product of
its eigenvalues). Using the formulae just given, one can show [43] that for anN ×N density
matrix (ρ), the volume element of the minimal monotone metric (and also the KMB metric) is
directly proportional to(detρ)−

1
2 , while for the maximal monotone metric, the volume element

is directly proportional to(detρ)
1−2N

2 . So, the divergence near the boundary of degenerate states
(detρ = 0) of the volume element of the maximal monotone metric is much more severe than
for the other two metrics under investigation. In fact, in our previous studies [6,31], we have
concluded that the integral of the volume element of the maximal monotone metric over the
convex set of 2× 2 density matrices doesnot converge (in contrast to those for the minimal
monotone and KMB metrics). (ForN > 2, however, the issue of convergence appears to
be unsettled.) So, it would seem that—unless one chooses to remove from consideration (as
was done in [6], for inferential purposes) those states the degeneracy of which exceeds some
prescribed level [6] (cf section 3.4)—one cannot, in fact, define a probability distribution based
on the maximal monotone metric. We have been able, however, forN = 3, by taking the limit
of a certain ratio, to obtain associatedmarginal probability distributions using the maximal
monotone metric [31].) Also, the maximal monotone metric is of substantial interest, in that
it has been characterized as the mostnon-informativeof the monotone metrics [6,7].

The motivating hypothesis for pursuing the analyses immediately below is that one should
be able to find values of the parametersn1 andn2 large enough (say,m1 andm2), so that the
associated probabilities of disentanglement are within someε of each other forany choices
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of n1 andn2 which dominatebothm1 andm2. (It is useful to bear in mind, however, that
there is a qualitative difference between analyses based onevenor oddvalues ofn2, as will be
indicated.) This would indicate a convergence of these probabilities in the continuum limit as
n1 andn2 each become indefinitely large.

3.1. The casen1 = 23,n2 = 7

The choice ofn2 = 7 leads to a square grid, having 32 points—serving as trial off-diagonal
entries—lying within the circle of radius one-half. (The particular arrangement of the lattice
points, then, mandates that those density matrices we will be able to construct will have off-
diagonal entries of modulus no less than1

7
√

2
≈ 0.101 015. This, in turn, implies that the

product of any pair of diagonal entries of the density matrices will not be less than this value.)
The numbers of density matrices we were, then, able to construct were 1 340 928. Of these,
356 096 passed the transposition test for separability. Applying the weights based on the three
monotone metrics considered, we obtained prior probabilities of encountering separable states
of

pmin = 0.111 102 pKMB = 0.087 3186 pmax = 0.084 6153. (2)

Of course, these three values are all considerably less than both the ZHSL statistic of
0.632± 0.002 and the preferred one (of the three given) of section 2 based on Jeffreys’
prior, that is≈0.35.

We have also computed the ‘degree of entanglement’,
∑4

i=1 λ
′
i−1 (which must lie between

zero and unity), for all the (1 340 928) density matrices and averaged the results with the same
set of three weights as used to obtain (2). The outcomes were

dmin = 0.182 06 dKMB = 0.208 022 dmax = 0.248 457. (3)

The corresponding value obtained by ZHSL for the 2× 2 systems was considerably smaller,
that is 0.057 [1, appendix B]. (ZHSL remarked that this quantity seemed to saturate at
approximately 0.10 for large systems.)

3.2. The casen1 = 19,n2 = 8

Since the parametern2 is now an even integer, the origin(0, 0) of the complex plane becomes,
by our particular mode of construction, one of the 49 intersection points of the square grid
lying within the circle of trial values for the off-diagonal entries. There are, then, no nontrivial
lower bounds imposed on the moduli of these entries, as there are for odd values ofn2—such
assevenin the immediately preceding analysis of section 3.1. We obtained 4 443 408 density
matrices, of which 1 284 816 satisfied the separability criterion. Use of the volume elements
of the three selected monotone metrics as weights resulted in

pmin = 0.147 968 pKMB = 0.123 283 pmax = 0.055 4999 (4)

and

dmin = 0.186 86 dKMB = 0.184 149 dmax = 0.177 13. (5)

3.3. Additional (nontruncated) analyses

Continuing along the same lines as sections 3.1 and 3.2, we have conducted analyses for
additional choices ofn1 andn2. (It is interesting to note that unit increases inn2 are relatively
more costly computationally than inn1.) We report our accumulated set of results in table 1.
The analyses are listed in increasing order of the total number of density matrices generated.
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(During the course of conducting these analyses, we were able to undertake larger-sized studies,
corresponding to those listed at the bottom of the table, by taking advantage of certain inherent
permutational symmetries. An analogous assertion can be made in regard to table 4.)

As a general rule, the probability of disentanglement is greatest for the minimal monotone
metric, although still markedly less than the ZHSL result (0.632± 0.002) or that of section 2
(≈0.35) based on Jeffreys’ prior. The stability of the results, on the other hand, is least for the
maximal monotone metric (in particular, notoriously so, for the case,n1 = 30,n2 = 7—but
see section 3.5). This instability may be explainable by the fact that the volume element of
the maximal monotone metric, as previously noted, is not normalizable (to form a probability
distribution) over the convex sets ofN ×N density matrices (in particular, forN = 4), being
highly singular near the degenerate states (while the volume elements of the minimal and
KMB metrics, though, still singular, are markedly less so, and are apparently normalizable,
extrapolating from the 2×2 case). So, one might rely upon either the minimal monotone metric
or KMB-metric to provide estimates of the probabilities of disentanglement (separability)—as
well as simulations of entangled systems, as ZHSL envisioned. We believe that estimates
based on the minimal monotone metric should, at least for fine enough grids and simplicial
decompositions, dominate estimates based on any other member of thecontinuumof monotone
metrics. Following the arguments of Petz and Sudar [2], we contend that any estimates not
based on such metrics (such as the ‘over-parametrized’ results of ZHSL [1]—cf [8]—and those
of section 2 here) fail to meet certain natural requirements and should, thus, be takencum grano
salis.

Let us also note a specific relation between the minimal monotone (Bures) metric and
the results of ZHSL. Thescalar curvatureof this metric has recently been shown to attain its
minimum, (5N

2−4)(N2−1)
2 , for the totally mixedN -dimensional (tracial) state (corresponding to

theN×N diagonal density matrix having all its nonzero entries equal to1
N

), and to diverge on
the degenerate states, those not of full rank [19]. Now, in their analysis, ZHSL concluded both
that all states in a small enough neighbourhood of the totally mixed state are separable, and that
the ‘purer a quantum state is, the smaller its probability of being separable’ [1]. Braunstein
et al have given ‘a constructive proof that all mixed states ofN qubits in a sufficiently small
neighbourhood of the maximally mixed state are separable’ [35], while Vidal and Tarrach have
also reached the same conclusion [36].

3.4. Reanalysis of the anomalousn1 = 30,n2 = 7 case based on truncation of states near to
degeneracy

We have also considered the possibility of introducing a third parameter of choice, that
is detρ—in addition ton1 and n2—into our computations. It would control the level of
degeneracy below which we reject for further consideration (due to the singular behaviour of the
volume elements of the monotone metrics), the (nearly degenerate) density matrices our explicit
enumeration method of section 3 generates. (This third parameter has been implicitly zero in
section 3.) We have, in fact, conducted three additional analyses for the casen1 = 30,n2 = 7,
for which we previously obtained results of a peculiar nature (table 1). The largest possible
value the determinant of a 4× 4 density matrix can possess is( 1

4)
4 = 1

256 = 0.003 906 25. In
the first analysis, we rejected all those density matrices with determinants less than1

256×10−4,
in the second,1

256× 10−3 and in the third, 1
256× 10−2. We report these results in table 2.

It appears then (based on the smallest nonzero threshold, that is1
256 × 10−4)

that the previously reported (zero-threshold) anomalous behaviour for the maximal and
KMB monotone metrics was attributable to some set (the number of which we are not
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Table 3. Results ofrandomsearches of the 15-dimensional parameter space, using differing values
of the radius (r) of the circle in the complex plane centred at(0, 0), from which the possible
off-diagonal entries of the 4× 4 density matrices are chosen.

r Searches ρ ρseparable pmin pKMB pmax dmin dKMB dmax
1
2 847 500 000 49 12 0.071 1773 0.054 8709 0.026 978 6 0.197 979 0.215 5 0.252 218
5
12 387 900 000 175 47 0.098 809 0.040 8168 0.002 182 39 0.173 6 0.180 24 0.194 678
1
3 351 700 000 2 438 619 0.085 3483 0.065 4313 0.180 815 0.201 774 0.222 59 0.147 024
1
4 74 300 000 15 701 3912 0.084 6071 0.036 407 1 0.001 489 44 0.178 73 0.202 29 0.290 831

certain) of near-degenerate states which, in fact, passed the partial transposition test for
separability.

3.5. Analyses based onrandomizedsearches

In the previous quantum-theoretic statistical analyses of this section, we employed systematic
explicit enumeration methods to generate 4× 4 density matrices, which we then tested for
separability. We embarked on such a course after initial computations indicated that it was
extremely difficult to locate the four-by-four density matrices (in the ambient 15-dimensional
parameter space) usingrandomsearch methods, in the fashion of ZHSL [1] and section 2 of
this paper. Nevertheless, at a later point, we chose to intensively pursue such a strategy.

In almost 850 000 000ab initio searches, we succeeded in obtaining (only) 61 density
matrices—of which 12 turned out to be separable. Realizing that the ‘hit rate’ would be
enhanced if, instead of searching for possible off-diagonal entries in the circle of radius one-
half in the complex plane, we also conducted analyses (though at the risk of introducing
possible biases) based on radii of one-third and one-fourth, as well (and also, in a supplementary
analysis, five-twelfths). The results are reported in table 3. (As in section 2, standard deviations
were not determined, so no specific assessment of the number of significant digits in the
probabilistic results is immediately available.) They are, then, arguably, generally consistent
with the sets of smaller probabilities reported in table 1, in particular, for those based on the
largest number of generated density matrices (corresponding to the bottom rows of the table),
in which we naturally repose the greatest confidence.

3.6. Probabilities as a function of the participation ratio

In figure 1, we show (using bins of width 0.05), relying upon the analysis for the 2× 2 case
n1 = 22, n2 = 10, the conditional probability (Psep) of separability based on the minimal
monotone metric, for a given participation ratioR (defined as the reciprocal of the trace of the
square of the density matrix [1, equation (17)]). In figure 2, we show its counterpart based
on the KMB metric. (These two figures—both having an unexplained ‘anomalous blip’ in the
interval [1.65, 1.7]—are the monotone metric analogues of figure 2(b) of [1]. It is encouraging,
however, that the ‘blip’ does not seem to appear in analogous plots for other values ofn1 and
n2. The value ofR, in theN = 2× 2 case, must lie between 1 and 4. IfR > 3, the density
matrix must be separable [1, equation (18)].)

Życzkowski [44], drawing upon a long list of open problems he presents, considers one of
the ‘most relevant’ to be the question of ‘whether the dependence of the conditional probability
on the participation ratio, obtained for product measures, holds also for the measures based
on the monotone metrics’. He has hypothesized the existence of certain universal/metric-
independent features in this regard, that is, he proposes that all ‘reasonable’ metrics should
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Figure 1. Conditional probability—based on the minimal monotone (Bures) metric—forN = 2×2
of finding a separable state, given a certain range (of width 0.05) of the participation ratioR, for
the scenarion1 = 22, n2 = 10.

Figure 2. Conditional probability—based on the KMB metric forN = 2 × 2—of finding a
separable state, given a certain range (of width 0.05) of the participation ratioR, for the scenario
n1 = 22, n2 = 10.

yield similar such plots. (He has, in fact, superimposed the figures here upon those previously
generated by him, and found a strong degree of resemblance between them.)

In figures 3 and 4, we show (again for the casen1 = 22, n2 = 10 of table 1) the probabilities
of our generating a density matrix (either separable or inseparable) based on the minimal
monotone and KMB metrics, respectively. (These are the monotone metric counterparts of
figure 2(a) of [1]. Since we find more probability concentrated at smaller values ofR than did
ZHSL, these two figures help us to understand why we obtain smalleroverall probabilities of
separability—in particular, less than 0.5 in theN = 2× 2 case—than their ‘surprising’ result
of 0.632± 0.002.)
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Figure 3. Probability—based on the minimal monotone (Bures) metric—forN = 2×2 of finding
a quantum state (whether separable or not), given a certain range (of width 0.05) of the participation
ratioR, for the scenarion1 = 22, n2 = 10.

Figure 4. Probability—based on the KMB metric—forN = 2× 2 of finding a quantum state
(whether separable or not), given a certain range (of width 0.05) of the participation ratioR, for
the scenarion1 = 22, n2 = 10.

3.7. The case of2× 3 systems

In table 4, we report initial findings (of an, unfortunately, rather unstable nature) for the 2× 3
systems—parallel to those given in table 1 for the 2×2 systems. (We note that the probability
of separability obtained by ZHSL [1] for the 2× 3 systems was 0.384± 0.002 and, with the
alternative use of the Jeffreys’ prior in section 2.3, 0.122.) There are now six diagonal entries
(associated withn1) and 15 pairs of off-diagonal entries (associated withn2) to consider, so
computational demands are substantially increased. We, of course, expect the probabilities of
separability to belessthan the corresponding ones in the 2× 2 case reported in table 1, and
this is certainly the case for the most extensive analysis (n1 = 20,n2 = 8).
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Table 4. Analogues for the 2× 3 systems of the results of table 1.

n1 n2 ρ ρseparable pmin pKMB pmax dmin dKMB dmax

8 8 7 581 5 205 0.643 091 0.654 085 0.678 443 0.025 4769 0.024 673 0.023 0053
11 6 35 268 9 828 0.000 171 812 0.000 192 414 0.000 212 583 0.592 094 0.592 009 0.591 929
14 6 149 607 59 727 0.368 812 0.425 491 0.461 59 0.147 718 0.118 212 0.100 94
15 6 158 522 59 185 0.147 933 0.152 787 0.128 344 0.299 006 0.281 777 0.235 139
13 9 245 760 8 448 0.034 375 0.034 375 0.034 375 0.185 994 0.185 994 0.185 994
9 8 235 616 65 840 0.234 146 0.262 858 0.266 667 0.080 3952 0.065 4659 0.063 7942

15 9 245 760 768 0.003 125 0.003 125 0.003 125 0.182 635 0.182 635 0.182 635
14 9 368 640 9 600 0.026 041 7 0.026 041 7 0.026 041 7 0.188 924 0.188 924 0.188 924
16 6 370 479 131 055 0.005 849 08 0.017 268 2 0.359 634 0.581 471 0.558 051 0.119 815
17 6 557 304 164 264 0.000 248 636 0.000 243 731 0.000 240 557 0.590 97 0.591 328 0.591 453
10 8 579 186 150 090 0.173 755 0.174 011 0.174 992 0.184 237 0.194 057 0.195 405
12 8 1 352 182 303 022 0.046 340 8 0.087 293 6 0.195 22 0.383 656 0.307 713 0.117 593
11 8 1 593 588 520 068 0.299 328 0.309 032 0.326 253 0.099 5446 0.096 8566 0.094 0759
22 6 2 875 965 974 818 0.016 003 4 0.125 932 0.072 155 8 0.562 473 0.374 128 0.259 626
24 6 3 870 989 1 360 213 0.192 395 0.199 33 0.314 609 0.292 782 0.268 782 0.140 023
13 8 4 408 872 881 397 0.055 189 2 0.065 933 3 0.256 791 0.294 217 0.259 817 0.091 5806
14 8 6 073 071 882 781 0.000 948 857 0.000 644 427 0.009 523 89 0.616 86 0.476 343 0.359 429
16 8 7 373 379 1 609 392 0.103 614 0.121 313 0.203 796 0.204 274 0.183 523 0.119 163
26 6 7 696 926 2 514 130 0.1132 0.111 881 0.099 992 4 0.368 272 0.289 389 0.229 179
15 8 15 603 746 2 109 650 0.000 899 908 0.001 623 05 0.001 146 51 0.639 42 0.599 576 0.461 553
17 8 19 413 528 3 311 159 0.054 504 0.056 265 6 0.039 816 8 0.323 892 0.298 912 0.259 056
18 8 29 075 408 5 061 131 0.081 246 0.073 791 2 0.095 851 3 0.2304 0.215 317 0.181 838
20 8 45 002 652 7 755 473 0.004 014 27 0.013 180 4 0.052 579 1 0.606 695 0.487 055 0.206 391

The somewhat counterintuitive observation that forn1 = 14, the choice ofn2 = 8 leads to
many more generated density matrices than forn2 = 9, is comprehensible in that only for even
values ofn2 are no nonzero lower bounds placed on the possible absolute values of off-diagonal
entries. We were not able for anyn2 = 7 scenario—due to memory limitations—to find a
large enoughn1, for which any density matrices at all were generated. We also possess no
immediate explanation for the equality of the threep andd for the three cases involvingn2 = 9.
(The relatively large probabilities for the scenario,n1 = 24, n2 = 6 may be attributable to a
‘number-theoretic’ effect, given that 24 is exactly divisible by six.)

A randomization approach, such as we pursued in section 3.5 for the 2×2 systems, would
clearly yield even fewer density matrices for a given number of independent searches than
there (table 3).

4. Concluding remarks

We have presented in this study, two forms of evidence (one essentially classical and the other
quantum-theoretic in nature) that the specific choice of (product) measure of ZHSL [1] led them
to substantially overestimate the extent to which quantum systems—in particular, forN = 2×2
and 2× 3—should be considered to possess, in some naturala priori sense, the property of
separability or disentanglement. The preponderance of evidence adduced indicates that the
probability of separability for theN = 2×2 systems, based on the minimal monotone (Bures)
metric is no greater than 11%—and if one views the evidence somewhat less conservatively,
perhaps less than 10%. In turn, estimates founded on any other member of the continuum
of monotone metrics should be lower still. For instance, for the Kubo–Mori/Bogoliubov
metric [7,40,41], an estimate of 9% would seem conservatively high. Apparently, themaximal



5274 P B Slater

monotone metric—the volume element of which possesses a high degree of singularity on the
degenerate states (detρ = 0), associated with its conjectured nonnormalizability over the
15-dimensional convex set of states—must, in some (perhaps limiting) sense, furnish alower
bound on the probability of separability. This bound would have to be strictly greater than
zero, if the related arguments made in [1,35,36,44], in fact, apply.

Let us also note that in continuing work, pertaining to [24], we have found a quite
interesting distinguished role (that of yielding both theminimaxand maximin in universal
quantum coding) for a monotone metric that has not apparently previously been noted. Its
associated Morozova–Chentsov function,

e(λi
λi /λj

λj )
1

λj−λi (6)

is simply the reciprocal of theexponentialor identricmean [42] ofλi andλj . The behaviour of
the related monotone metric appears to be quite close to that of the minimal (Bures) monotone
metric.

The need for additional computational work (possibly utilizing supercomputers) is
indicated, in regard to what we contend are the theoretically superior (properly parametrized)
quantum-theoretic analyses of section 3, in order to more closely pinpoint estimates. Such
analyses could be based on finer simplicial decompositions for the trial diagonal entries (that
is, higher values ofn1) and finer square grids for the trial off-diagonal entries (that is, higher
values ofn2), than those reported in section 3, and/or possibly randomization procedures, as
in section 3.5.

At several points in this paper, we have indicated that the analyses of ZHSL [1] were ‘over-
parametrized’, in thatN2 +N −1 parameters were employed, rather thanN2−1, as is clearly
most natural for theN×N density matrices (which form an(N2−1)-dimensional convex set).
However, in a personal communication, M Byrd has asserted that this bothersome feature could
be avoided, sinceN −1 Euler angles (in addition to the ‘phase’, as is well known) can be seen
to, in fact, vanish in the ZHSL-type representation [1, equation (25)] of a density matrix in the
product formU ′DU . Byrd has been able to explicitly show this in the caseN = 3, based on
the Euler angle parametrization given in [45] (the anglesc andφ vanishing) and contends that
analogous phenomena must hold forN > 3, as well (cf [8]). (This vanishing does not appear
to occur with the particular Euler angle parametrizations (associated with Hurwitz) used by
ZHSL, given in [29, 46]. Byrd suggests that this is because the ‘diagonal matrices that make
up the maximal torus’ do not appear on the end, while if they did, they would commute with
the diagonalized density matrix.) This highly interesting line of thought would suggest that
the analyses of ZHSL,̇Zyczkowski [44] and those of section 2 here (but, of course, not those
‘properly parametrized’ ones of section 3) should be repeated in such a more parameter-wise
economical framework, and the new results compared with those previously obtained, to see
whether any differences are found (cf [47]).
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